β* Measurement at D0 #### **Avdhesh Chandra** Luminosity Meeting Aug 1st 2007 #### The Method - Interaction region is from -40cm to +40cm on z-axis, dividing data in slices of 5 cm each on z-axis, total 16 division (say z-region) $$dca = y_v cos\phi - x_v sin\phi$$ $$\langle d_1 d_2 \rangle = \frac{1}{2} (\sigma_2^2 - \sigma_1^2) \cos 2\Phi + \frac{1}{2} (\sigma_2^2 + \sigma_1^2) \cos \Delta\Phi - T \sin 2\Phi$$ where, σ_1 , σ_2 and T are parameters - $x_v & y_v \rightarrow (x, y)$ coordinate of the vertex - $d_1 \& d_2 \rightarrow$ impact parameter of two tracks from the same vertex - $\sigma_1 \& \sigma_2 \rightarrow$ beam width in horizontal and vertical plane - T \rightarrow correlation between $\sigma_1 \& \sigma_2$ The interaction region is a drift in the Tevatron, z dependence of beam width given by following formula $$\sigma^2 = \varepsilon_{eff} \left[\beta^* + \frac{(z - z_0)^2}{\beta^*} \right]$$ ## $\sigma_{\mathsf{x}} \rightarrow \beta_{\mathsf{x}}^{\mathsf{*}}$ #### Red dots corresponds to beam width in horizontal plane (in micron m) # $\sigma_{y} \rightarrow \beta^{*}_{y}$ #### Red dots corresponds to beam width in vertical plane (in micron m) ## X/Y coordinate vs. Z ## β* vs. Stores ## β^* vs. recent stores ## ε vs. Stores # **Z**₀ vs. Stores ## Summary - **!** Measurement shows that β^*_x and β^*_y did not change significantly from last reported measurement. - **Sextupole implementation (near store 5467 & 5480) not affected the** β^*x/β^*y . - The average value of β^*x is ~35cm and β^*y is ~42cm with some fluctuations. - Updated results are available at: http://www-clued0.fnal.gov/~avdhesh/Beam_main.html